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Dot Product

Definitions

Let ~x =


x1

x2

...
xn

 and ~y =


y1

y2

...
yn

 be vectors in Rn.

1. The dot product of ~x and ~y is

~x · ~y = x1y1 + x2y2 + · · · xnyn = ~xT~y.

2. The length or norm of ~x, denoted ||~x|| is

||~x|| =
√

x2
1 + x2

2 · · ·+ x2
n =

√
~x · ~x =

√
~xT~x.

3. ~x is called a unit vector if ||~x|| = 1.



Theorem (Properties of length and the dot product)
Let ~x,~y,~z ∈ Rn, and let a ∈ R. Then

1. ~x · ~y = ~y · ~x (the dot product is commutative)
2. ~x · (~y +~z) = ~x · ~y + ~x ·~z (the dot product distributes over addition)
3. (a~x) · ~y = a(~x · ~y) = ~x · (a~y)
4. ||~x||2 = ~x · ~x.
5. ||~x|| ≥ 0 with equality if and only if ~x = ~0n.
6. ||a~x|| = |a| ||~x||.



Example
Let ~x,~y ∈ Rn. Then

||~x + ~y||2 = (~x + ~y) · (~x + ~y)
= ~x · ~x + ~x · ~y + ~y · ~x + ~y · ~y
= ~x · ~x + 2(~x · ~y) + ~y · ~y
= ||~x||2 + 2(~x · ~y) + ||~y||2.



Problem

Let {~f1,~f2, . . . ,~fk} ∈ Rn and suppose Rn = span{~f1,~f2, . . . ,~fk}. Furthermore,
suppose that there exists a vector ~x ∈ Rn for which ~x ·~fj = 0 for all j,
1 ≤ j ≤ k. Show that ~x = ~0n.

Proof.

Write ~x = t1~f1 + t2~f2 + · · ·+ tk~fk for some t1, t2, . . . , tk ∈ R (this is possible
because ~f1,~f2, . . . ,~fk span Rn, is this representation unique?). Then

||~x||2 = ~x · ~x
= ~x · (t1~f1 + t2~f2 + · · ·+ tk~fk)

= ~x · (t1~f1) + ~x · (t2~f2) + · · ·+ ~x · (tk~fk)
= t1(~x ·~f1) + t2(~x ·~f2) + · · ·+ tk(~x ·~fk)
= t1(0) + t2(0) + · · ·+ tk(0) = 0.

Since ||~x||2 = 0, ||~x|| = 0. By the previous theorem, ||~x|| = 0 if and only if
~x = ~0n. Therefore, ~x = ~0n. �
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Cauchy-Schwartz Inequality

Theorem (Cauchy-Schwartz Inequality)

If ~x,~y ∈ Rn, then |~x · ~y| ≤ ||~x|| ||~y|| with equality if and only if {~x,~y} is
linearly dependent.

∣∣∣∣ ~x
||~x|| ·

~y
||~y||

∣∣∣∣ ≤ 1

{~x,~y} is linearly dependent ⇔ ~x = t~y, for some t ∈ R.



Proof.
Let ~x,~y ∈ Rn and t ∈ R. Then

0 ≤ ||t~x + ~y||2 = (t~x + ~y) · (t~x + ~y)
= t2~x · ~x + 2t~x · ~y + ~y · ~y
= t2||~x||2 + 2t(~x · ~y) + ||~y||2.

The quadratic t2||~x||2 + 2t(~x · ~y) + ||~y||2 in t is always nonnegative, so it
does not have distinct real roots. Thus, if we use the quadratic formula to
solve for t, the discriminant must be non-positive, i.e.,

∆ = (2~x · ~y)2 − 4||~x||2||~y||2 ≤ 0

Therefore, (2~x · ~y)2 ≤ 4||~x||2||~y||2. Since both sides of the inequality are
nonnegative, we can take (positive) square roots of both sides:

|2~x · ~y| ≤ 2||~x|| ||~y||

Therefore, |~x ·~y| ≤ ||~x|| ||~y||. What remains is to show that |~x ·~y| = ||~x|| ||~y||
if and only if {~x,~y} is linearly dependent. �



Proof. (continued)

First suppose that {~x,~y} is dependent. Then by symmetry (of ~x and ~y),
~x = k~y for some k ∈ R. Hence

|~x·~y| = |(k~y)·~y| = |k| |~y·~y| = |k| ||~y||2, and ||~x|| ||~y|| = ||k~y|| ||~y|| = |k| ||~y||2,

so |~x · ~y| = ||~x|| ||~y||.

Conversely, suppose {~x,~y} is independent; then t~x + ~y 6= ~0n for all t ∈ R, so
||t~x + ~y||2 > 0 for all t ∈ R. Thus the quadratic

t2||~x||2 + 2t(~x · ~y) + ||~y||2 > 0

so has no real roots. It follows that the the discriminant is negative, i.e.,

(2~x · ~y)2 − 4||~x||2||~y||2 < 0.

Therefore, (2~x · ~y)2 < 4||~x||2||~y||2; taking square roots of both sides (they
are both nonnegative) and dividing by two gives us

|~x · ~y| < ||~x|| ||~y||,

showing that equality is impossible. �



Corollary (Triangle Inequality I )

If ~x,~y ∈ Rn, then ||~x + ~y|| ≤ ||~x||+ ||~y||.

Proof.

||~x + ~y||2 = (~x + ~y) · (~x + ~y)
= ~x · ~x + 2~x · ~y + ~y · ~y
= ||~x||2 + 2~x · ~y + ||~y||2

≤ ||~x||2 + 2||~x|| ||~y||+ ||~y||2 by the Cauchy Inequality
= (||~x||+ ||~y||)2.

Since both sides of the inequality are nonnegative, we take (positive) square
roots of both sides:

||~x + ~y|| ≤ ||~x||+ ||~y||.

�



Definition
If ~x,~y ∈ Rn, then the distance between ~x and ~y is defined as

d(~x,~y) = ||~x − ~y||.

Theorem (Properties of the distance function)
Let ~x,~y,~z ∈ Rn. Then

1. d(~x,~y) ≥ 0.
2. d(~x,~y) = 0 if and only if ~x = ~y.
3. d(~x,~y) = d(~y,~x).
4. d(~x,~z) ≤ d(~x,~y) + d(~y,~z) (Triangle Inequality II).

Proof. (Proof of the Triangle Inequality II)

d(~x,~z) = ||~x −~z|| = ||(~x − ~y) + (~y −~z)||
≤ ||~x − ~y||+ ||~y −~z|| by Triangle Inequality I
= d(~x,~y) + d(~y,~z).

�
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Orthogonality

Definitions
I Let ~x,~y ∈ Rn. We say that two vectors ~x and ~y are orthogonal if

~x · ~y = 0.

I More generally, X = {~x1,~x2, . . . ,~xk} ⊆ Rn is an orthogonal set if each
~xi is nonzero, and every pair of distinct vectors of X is orthogonal, i.e.,
~xi · ~xj = 0 for all i 6= j, 1 ≤ i, j ≤ k.

I A set X = {~x1,~x2, . . . ,~xk} ⊆ Rn is an orthonormal set if X is an
orthogonal set of unit vectors, i.e., ||~xi|| = 1 for all i, 1 ≤ i ≤ k.



Examples
1. The standard basis {~e1, · · · ,~en} of Rn is an orthonormal set (and hence

an orthogonal set).

2. 
 1

1
1
1

 ,

 1
1

−1
−1

 ,

 1
−1
1

−1


is an orthogonal (but not orthonormal) subset of R4.

3. If {~x1,~x2, . . . ,~xk} is an orthogonal subset of Rn and p 6= 0, then
{p~x1, p~x2, . . . , p~xk} is an orthogonal subset of Rn.

4. 1

2

 1
1
1
1

 ,
1

2

 1
1

−1
−1

 ,
1

2

 1
−1
1

−1


is an orthonormal subset of R4.



Definition
Normalizing an orthogonal set is the process of turning an orthogonal (but
not orthonormal) set into an orthonormal set. If {~x1,~x2, . . . ,~xk} is an
orthogonal subset of Rn, then{

1

||~x1||
~x1,

1

||~x2||
~x2, . . . ,

1

||~xk||
~xk

}
is an orthonormal set.





Problem
Verify that 

 1
−1
2

 ,

 0
2
1

 ,

 5
1

−2


is an orthogonal set, and normalize this set.



Solution

 1
−1
2

 ·

 0
2
1

 = 0− 2 + 2 = 0,

 0
2
1

 ·

 5
1

−2

 = 0 + 2− 2 = 0,

 1
−1
2

 ·

 5
1

−2

 = 5− 1− 4 = 0,

proving that the set is orthogonal. Normalizing gives us the orthonormal set 1√
6

 1
−1
2

 ,
1√
5

 0
2
1

 ,
1√
30

 5
1

−2

 .

�



Theorem (Pythagoras’ Theorem)

If {~x1,~x2, . . . ,~xk} ⊆ Rn is orthogonal, then

||~x1 + ~x2 + · · ·+ ~xk||2 = ||~x1||2 + ||~x2||2 + · · ·+ ||~xk||2.

Proof.
Start with

||~x1 + ~x2 + · · ·+ ~xk||2 = (~x1 + ~x2 + · · ·+ ~xk) · (~x1 + ~x2 + · · ·+ ~xk)

= (~x1 · ~x1 + ~x1 · ~x2 + · · ·+ ~x1 · ~xk)

+(~x2 · ~x1 + ~x2 · ~x2 + · · ·+ ~x2 · ~xk)

...
...

...
+(~xk · ~x1 + ~xk · ~x2 + · · ·+ ~xk · ~xk)

= ~x1 · ~x1 + ~x2 · ~x2 + · · ·+ ~xk · ~xk

= ||~x1||2 + ||~x2||2 + · · ·+ ||~xk||2.

The second last equality follows from the fact that the set is orthogonal, so
for all i and j, i 6= j and 1 ≤ i, j ≤ k, ~xi · ~xj = 0. Thus, the only nonzero
terms are the ones of the form ~xi · ~xi, 1 ≤ i ≤ k. �
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Orthogonality and Independence

Theorem
If S = {~x1,~x2, . . . ,~xk} ⊆ Rn is an orthogonal set, then S is independent.

Proof.

Form the linear equation: t1~x1 + t2~x2 + · · ·+ tk~xk = ~0. We need to check
whether there is only trivial solution. Notice that for all i, 1 ≤ i ≤ k,

0 = (t1~x1 + t2~x2 + · · ·+ tk~xk) · ~xi = ti~xi · ~xi = ti||~xi||2,

since tj~xj · ~xi = 0 for all j, 1 ≤ j ≤ k where j 6= i. Since ~xi 6= ~0n and
ti||~xi||2 = 0, it follows that ti = 0 for all i, 1 ≤ i ≤ k. Therefore, S is linearly
independent. �



Example
Given an arbitrary vector

~x =


a1

a2

...
an

 ∈ Rn,

it is trivial to express ~x as a linear combination of the standard basis
vectors of Rn, {~e1,~e2, . . . ,~en}:

~x = a1~e1 + a2~e2 + · · ·+ an~en.



Problem
Given any orthogonal basis B of Rn (so not necessarily the standard basis),
and an arbitrary vector ~x ∈ Rn, how do we express ~x as a linear
combination of the vectors in B?
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Fourier Expansion

Theorem (Fourier Expansion)

Let {~f1,~f2, . . . ,~fm} be an orthogonal basis of a subspace U of Rn. Then for
any ~x ∈ U,

~x =

(
~x ·~f1
||~f1||2

)
~f1 +

(
~x ·~f2
||~f2||2

)
~f2 + · · ·+

(
~x ·~fm
||~fm||2

)
~fm.

This expression is called the Fourier expansion of ~x, and

~x ·~fj
||~fj||2

, j = 1, 2, . . . ,m

are called the Fourier coefficients.



Example

Let ~f1 =

 1
−1
2

 ,~f2 =

 0
2
1

, and ~f3 =

 5
1

−2

, and let ~x =

 1
1
1

.

We have seen that B = {~f1,~f2,~f3} is an orthogonal subset of R3.

It follows that B is an orthogonal basis of R3. (Why?)

To express ~x as a linear combination of the vectors of B, apply the Fourier
Expansion Theorem. Assume ~x = t1~f1 + t2~f2 + t3~f3. Then

t1 =
~x ·~f1
||~f1||2

=
2

6
, t2 =

~x ·~f2
||~f2||2

=
3

5
, and t3 =

~x ·~f3
||~f3||2

=
4

30
.

Therefore,  1
1
1

 =
1

3

 1
−1
2

+
3

5

 0
2
1

+
2

15

 5
1

−2

 .



Proof. (Fourier Expansion)

Let ~x ∈ U. Since {~f1,~f2, . . . ,~fm} is a basis of U, ~x = t1~f1 + t2~f2 + · · ·+ tm~fm
for some t1, t2, . . . , tm ∈ R. Notice that for any i, 1 ≤ i ≤ m,

~x ·~fi = (t1~f1 + t2~f2 + · · ·+ tm~fm) ·~fi
= ti~fi ·~fi since {~f1,~f2, . . . ,~fm} is orthogonal

= ti||~fi||2.

Since ~fi is nonzero, we obtain

ti =
~x ·~fi
||~fi||2

.

The result now follows. �

Remark

If {~f1,~f2, . . . ,~fm} is an orthonormal basis, then the Fourier coefficients are
simply tj = ~x ·~fj, j = 1, 2, . . . ,m.



Problem

Let ~f1 =


1
1
0
0

 , ~f2 =


1

−1
0
0

 , ~f3 =


0
0
1
1

 , ~f4 =


0
0
1

−1

 .

Show that B = {~f1,~f2,~f3,~f4} is an orthogonal basis of R4, and express
~x =

[
a b c d

]T as a linear combination of ~f1,~f2,~f3 and ~f4.

Solution

Computing ~fi ·~fj for 1 ≤ i < j ≤ 4 gives us

~f1 ·~f2 = 0, ~f1 ·~f3 = 0, ~f1 ·~f4 = 0,

~f2 ·~f3 = 0, ~f2 ·~f4 = 0, ~f3 ·~f4 = 0.

Hence, B is an orthogonal set. It follows that B is independent, and since
|B| = 4 = dim(R4), B also spans R4. Therefore, B is an orthogonal basis of
R4. By the Fourier Expansion Theorem,

~x =

(
a + b
2

)
~f1 +

(
a − b
2

)
~f2 +

(
c + d
2

)
~f3 +

(
c − d
2

)
~f4.
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